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theory and Boolean algebra theory that we shall need later (see (51, [8], [14] for more 
details). To begin with, we shall always deal with commutative rings with unit and 
with homomorphisms that send 1 to 1. N will stand for the natural numbers, and 
1 XI will denote the cardinal number of the set X. Otherwise the nc;tation is 
standard. 

I. I . Witrafilters 

Let 1 be a nonempty set. We recall that P(1) is the set of all subsets of I. A fiiter 
over I is defined to be a nonempty set 9 of B(I) such that 

(1) O$ K 
(2) If X, YE 5 then Xn YE K 
(3) If XE y and XCZCI, then ZE 5 

An uhafilter I& over I is a filter which is maximal in the family of filters over I 
(ordered by set inclusion). An ultrafilter /// is said to be con-principal if {i} $ I# for 
all ie I and otherwise is principal. If I is finite, then all ultrafilters are principal, 
but if I is infinite, then there exist non-principal ultrafilters. A non-principal 
ultrafilter 9 over I is said to be w-complete (or countably complete) if whenever 
( Xn 1 n c w} is a collection of elements of 9, then n{ Xn 1 n c u} is also in @. Of 
course *‘l/ is o-incomplete (or countably incomplete) if it is not w-complete. This 
definition can be generalized to an arbitrary infinite cardinal CT. The ultrafilter I/// 
is said to be a-complete if n{X{ 1 r< CT} E I# whenever {< cy and X4 E /v. If I has 
cardinality cy, there is no non-principal cr-complete ultrafilter over I; therefore all 
non-principal ultrafilters on a countable set are o-incomplete. 

I. 2. Measurable cardinals 

A cardinal a is U/am-measurable if there exists on ar an w+-complete non- 
principal ultrafilter. A cardinal CT is measurable if there exists on CT a P-complete 
non-principal ultrafilter for each /&~a. It has been proved that the smallest Ulam- 
measurable cardinal >co is measurable (see [9]). For our purposes we shall comment 
that there exist o-complete non-principal ultrafilter over I only if 111 z K, where K 
denotes the hypothetical first measurable cardinal. 

1.3. Ultraproduct of rings 

Let 

be the direct product of the family of rings {Ri 1 i E I}. Let Ou be an ultrafilter over 
I. We say that two elements f and g of R are G@ equivalent, in symbols f = Cv g, if 
{i E I If(i) = g(i)} E @. The binary relation = r’/ is a congruence relation on R. Set 
!? = fliE, Ri/‘k and let $ denote the residue class of f module @. The ring 
termed the ultraproduct of the fa ily (Ri 1 ie 1) with respect to the &rafi]ter -&* 
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When the rings Ri are all equal, say to S, then R = S’/@ is termed the ultrapower 
of the ring S. Moreover, since R z Ri for some in I whenever the ultrafilter % is 
principal, we shall assume throughout this paper that the ultrafilters we are dealing 
with are non-principal; thus the index set will be infinite. 

1.4. Boolean algebra associated with a ring 

Let R be a ring. The set of idempotents in R will be denoted by B(R) or simply 
by B. The set B forms a Boolean algebra provided with the following order relation: 
for any e, f e B, es f if e= eJ In this case the complement e’ of e in B is 1 - e, 
el\f = ef, evf= e+f - ef, for any e, f elements of & Also B is said to be compler’e 
if there exist inf and sup for any subset S of B (see [14]). 

1 S. Ultraproducts of Boolean algebras 

We introduce some further notation. Let I be a set and ‘// be an ultrafilter on I. 
We shall write Bi for a Boolean algebra and &? for n,,, Di/ ‘//, the ultraproduct. 
For each i E I, let ai be a cardinal number. We say that { ai 1 i E I} is unbounded 
modulo # if for each natural number n we have {i E II Cyi > n} E, “)/; sometimes we 
will abbreviate the last statement to ai> n (a.e. mod 9)) where a.e. mod + means 
almost everywhere modulo @. Of course, if the ai are all infinite, then they are un- 
bounded modulo @. 

Theorem 1.1. Let I be any set and 4/ a countable incomplete ultrafilter 3n I. Let 
Bi be a Boolean algebra for every ie I. Then the following conditions are equi- 
valen t: 

(0 { ladi/ Ii4 is unbounded modulo /i/. 
(ii) &’ = fliEI Bi/ S# is not a complete Boolearr (algebra. 

For the proof we shall need a preliminary result. First, since ti is countably 
incomplete, we can pick pairwise disjoint sets Im, where 1 ,(rn E IN, such that 

U,“=I r~=I and U~=I m I $ ol’r for all n E N. For each i E I set #(i) = the unique 1~2 
such that i E Im. Also let pi be the number of atoms of Bi if Bi is finite and let 
pi = 00 if Bi is infinite. Finally, set vi = min( #(i), pi) (hence vi is always finite and 
21). 

Lemma 1.2. For each j&I, we have vi>j (a.e. mod ti). 

Proof. We have 

{iEI(ViSj}G{iEI~ #(i)Sj or ,UiSj} 

t U I,U(iEl) Bi has at most j atoms} 
KSij 



she set U_.J~ is not in 4~ by the choice of the sets IK; the set (ieli IIP,I<ZK} is 
also not in % by the assumptiun that { 1 $11 i E I) is unb~un~~~ ~o~ulo @. Hence 
{kIl v,~j} $ %$ that is vi>j (a.e. mud %). 

Proa% af theorem 1A Assume that (i) holds* By the definition of vi, we can pick 
for each je I elements bi,i E& where j < Vi, such that 

bij+O and &J’MA~~=O if j,*jz. t * 

For each Jo M, define 

f0 I b 
ji= 1 

i, j if Vi >j, 

if v$j. 

Then 4 E fliEE Ipi and bj :=$ E 9. We claim that supjEN bj does not exist in 8. 
Suppose the contrary and let b =supje N jV b Hence b =$ for some $ E &__Bi. Let 
li E N be maxims such that f(i) Ib,,,., and Ii = - 1 if f(i) rbi,j, for al1 j. Set 

if liZ0, 

if li=-1. 

Then clearly ~~~) ~g(i) for all i E 1. Hence c : = gr,j’= b. We prove next that c *O. 
We have $= bz; bj =$, for afl j E N. Therefore f(i) rf;-(i) (a.e. mod 4?) and for all 
Jo N. But _@i) = bi,j (a.e. mod @), as follows immediately from Lemma 1.2, Thus 
~~~~~b~*~ (a.e. mod %) for any fixed j&-f. Hence 

(4 Qzj (a.e. mod lu) for ail JEN. 

In particular ii ~0 (a,e. mod 9’); therefore 

(**I g(i) zb,/, (#O) (a.e. mod #). 

Hence c = g #O as claimed. Clearly, by (*), li zj + 1 (a.e. mod w ). Hence 

(***) g(~>nbi,j=bi,Iinb~,j-O (a.e. mod @) 

since li sf: j yields bi, lg f”I 5, j = 0 by the choice of the bisi where j< vi+ But (***I says 
that 

gnJPj=O, ;hat is, cf7bj=0 

since A(i) = b,j (a.e, mod @)* 
To summarize we have: 

OfCSb=SUpbj 
jant 

and Cnbj=O for all j&J, 

which is an obvious contradiction. This completes the proof that (i)* (ii). 
For the converse we shall prove that if ( 1Bil i id) is bounded module +& then 

I3 is complete {the assumption that 9 ably incomplete is not needed for the 
proof of this part). Thus we are su that for some no N, lBil Sn (a,e 
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mod #). Set lj={iEIIIBil=j} for jrn. ThenI=U,,,J’$+ and therefore there 
is some fixed j such that 4 E “lr, that is, I& I= j (a.e. mod ‘//). Thus j = 2’ for some 
I (the only possible cardinals of finite Boolean algebras being power of 2). Hence 
Bi is (isomorphic to) the algebra on I atoms (a.e. mod 9). Therefore we can sup- 
pose that Bi is the algebra on I atoms for all in I (changing the algebraic structure 
of Bi for in J$ “I/ does not affect the ultraproduct). Thus let Bi = d be the algebra 
on I atoms for all & I. But then ,8 = n,,, .w’i 9 = .Q?*/ :I)/ is isomorphic to ,d itself; 
hence .@ is complete. To see that :g z. d we proceed as follows. Let b E 9; then b =$ 
for some f E d For each a E .d, set I4 = {i E I If(i) = a}. Then I= U,, Y &. Since ,d 
is finite, 1,~ 4~ for some aE d. Hencef(i) =a (a.e. mod +Y). Define p(f) = a. Then 
it is not hard to check that (p is an isomorphism of &’ onto .w’. 

Remark 1.3. Theorem 1.1 clarifies the situation for countably incomplete ultra- 
filters, that is for an index set I whose cardinality is less than the first measurable 
cardinal k (if it exists). When I II I k, we have to take care of w-complete ultrafilters 
as well. In this case the ultraproducts will be complete for all complete Boolean 
algebras whose cardinality remains bounded by a certain very large cardinal number 
(namely the degree of completeness of the ultrafilter). However, one has the com- 
pleteness for trivial reasons - the ultraproduct is simply isomorphic to one of the 
factors. If the cardinalities of the algebras are allowed to approach this cardinal (or 
exceed it) (mod I#), the ultraproduct is again incomplete. 

Another result of independent interest is the following. 

Theorem 1.4. Let I be a set and, for each i E I, let Ri be IP ring. Set Bi = B(l;?i) for 
all i E I, and let -I# be an uitrafilter on I. Then 

Proof. We need only show that the set-theoretical equality holds since the Boolean 
operations are the same. The includion niel Bi/ J// c A?( mi, I Ri/ ti ) is clear. TO 
establish the converse, we choose any SE 3(fligl R,/ 2l) and set 

Hf= {k I lf2(i) =f(i)} E JI/. 

We need to show that _7=# E nie, Bi/@ where gE nj,,& Let g = (z(i)) be the 
element of nia, .Ri defined as follows 

g(i) f(i) r 
[ 

if i+f, 
1 if i@HJ, 

for all kI. Then gEnie_BiG niE,Ri and $+,.K 
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2. Ultraproducts of rings with the pm-property 

We recall from [l l] that a ring A is a pm-ring if and only if it satisfies the 
following condition: For every element m E A, there exist a, b E A such that 
(1 -am)(l -bm’)=O, where m’= 1 -mm, 

Proposition 2.1. An ultraproduct of pm-rings is a pm-ring. 

Proof. From [ 1 l] we know that a direct product of pm-rings is a pm-ring. Further- 
more, passing to a quotient does not affect the order structure of prime ideals in 
the case of pm-rings. 

Special types of pm-rings 

2.1. Soft rings 

Definition 2.2. A soft (or mou-) ring is a ring whose Jacobson radical is zero and 
whose maximal spectrum is Tz (see [7], [i 11, [ 171). 

Proposition 2.3. An ultraproduct of soft rings is a soft ring. 

Prcsof. An ultraproduct of soft rings is already a pm-ring since a soft ring is a pm- 
ring (see [l 1]), and therefore Proposition 2.1 applies. Moreover, the Jacobson 
radical of an uhraproduct is the ultraproduct with respect to the same ultrafiher of 
the J;ic&son radicals (see [ 1811, and the proof is complete. 

2.2. TB-rings 

Let A be a ring and let I3 be the Boolean algebra associated with A. The map 
(p : Max A -6pec B given by m - m n B is always continuous, surjective and closed 

(see PI). 

efinition 2.4. A ring A is said to be topologically Boofean (or, briefly, a TB-ring) 
if either the above map up is injective (that is, a homeomorphism) or the following 
property is satisfied: 

-property. For all m, m' E A such that m + m’= 1, there exist a, b, c, d, e E A, 
e2=e, such that (1 -am)(l -bm')=O, l-am=ce and 1 -bm’=de’, where 
e’= 1 -e. (See [ll].) 

A TB-ring is a pm-ring and, moreover, a direct product of TB-rings is a TB-ring 
(see [ 111). 



ot difficult to 

only show that the m 

Max44 -a Spec B 

From the commutativity of the diagram we deduce that (o-r 0 j) 0 ~/~ = i, which is 
inje~t~ve; then ~~~ must be ~nje~tive. 

~ef~~~~~~ 2.6. A TB~ring whose Boolean algebra of id~rn~o~ents is ~ornp~~te is said 
to be a ~o~~~e~~ 

That a direct product of ~urn~lete 
been proved in [Ill. 

s is also a compf &te TB~ring has already 

Pmof. For each integer PI we take the Boolean alg ra 2’ and we lee -a be any non- 
principal ultrafilter on N. Then flnEN 2”/@ is incomplete by Theorem 1.1. 

ote the set of ah prime ideals of A. Let Spec A be 
with the ~ariski topology which ~arti~ly orders X by set~inc~usions~ 

9 if 9 G 9 for 9,s E X’, We give X a new topology by taking as a basis 
for the closed subsets the quasineom~act open subsets of Spec 
new topology is spectral (that is, it is the prime s~~trurn of 
chosen to be reduced). Moreover, the order 5 induced on .X by the latter topology 

reverse of the origins one (that is, 9 13 iff 3 s 9). 
the prime spe~tru of the rings introduces in ~e~t~o~ 2 the reverse 
us investigate the avior of the rin s su c~btained by taking direly 

products and ultra~roducts of them. This wiif be done in the next section. 
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4. MP-property under direct product and ultraproducts 

Remark 4.1. The ‘duality’ between the PM-property and the MP-property, which 
can be established by means of the reverse topology, does not extend to the 
topology. In fact, if a ring is pm, then its maximal spectrum is compact (that is, 
Hausdorff since it is always quasi-compact (see [ll], [12])), but the MP-property 
does not imply that the minimal spectrum of the ring is compact (that is, quasi- 
compact since it is always Hausdorff). Take as a counter-example C(X, IF?), the ring 
of all continuous real valued functions on a topological space X, which is an F-space 
but not a basically disconnected space (see [3], [ 131). 

For the first result of this section we need a fact from [3]. 

Lemma 4.2, Let A be a reduced ring. Then the following conditions are equivalent: 
(i) A is an rnp-ring. 

(ii) If a, b E A and ab = 0, ihen Ann(a) + Ann(b) = A. 
(iii) For every a, b E A, Ann(a) + Ann(b) = Ann(ab). 

Theorem 4.3. A direct product (respectively, an ultraproduct) of reduced mp-rings 
is a reduced mp-ring. 

Proof. We can apply condition (ii) of Lemma 4.2 since it is not difficult to prove 
that a direct product (respectively, an ultraproduct) of reduced rings is a reduced 
ring as well. 

Remark 4.4. If we drop the hypothesis that the rings are reduced, then Theorem 4.3 
does not hold, as the following example shows. 

Example 4.5. Let A = n,“= 1 A,, where A, = K[X~, Yn]/(X,, Yn, Xi, r,“) and let K be 
any field. Set yn = (Xt Y*, X:, Yt). Each A, is an Artinian local ring and hence an 
mp-ring with maximal ideal .,&=(x,, u,) where x, = Xn + yn and yn = Yn + .yn 
denote the residue classes of X,, and Y, modulo C7n. The element x = (x~), x, E An, 
belongs to the Jacobson radical J= n,,, , An of A and so does the element y = (u,), 
YF64. Moreover, x and y are not nilpotent because XK = (x,K) +O and 
yK = (y,“) #0 for every integer K L 1, but xy = (x, u,) = 0. Now take any maximal 
ideal u/( of A. There exisfs a minimal prime ideal 9 c &’ such that x & 9$ thus y G 9. 
Also there exists a minima2 prime ideal 2 c .A such that y $9; therefore x E 2 and 
*9 # 2. Hence A is not an mp-ring. 

Special types qf mp-rings 

4.1. Weak Ba4r ikgs 



~i~~~~ k6. A ring is said to be a ~~~~ Gwen ~~~~ if the annihilator ideal of every 
element is principal and is generated by an ~dempotent (see f3]) [ti] ) [ 10) ) [ 191). 

aer ring is reduced and it is an rnp~rin~ because of the foIlow~n 
from [3], [6] and [lO]. 

As our first result we prove: 

Proof, Let A = flAGA AA:, where 
me wi!.f prove that A s isfies (iv) of Theorem 4-X First, the 

)-” n, ,_n QA implies that ) is a von Neumann regular ring, 
secondly, since 

the idempotents of Q lie in A, and therefore the first part; of the statement is proved. 
(For a different proof see [19, Lemma 21). For the second part, let %/ be an ultra- 
filter over the index set A. Of course -& will be nonN~rinc~~a~. From the isomor~his 

@ established in [M] it follows that dE+, Ai/ Z? j is 

B 

which concludes the proof = 

A is said to be a lair rich if the a~~i~~lat~r ideaf of every i~~~~ is 
principal and is venerated by an idempute~t (see [M]). 
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