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Introduction

It is a theorem of logic that a first-order property is preserved under the ultra-
product operation. Amitsur [1] asked if there is a direct algzbraic proof of this
property and he proceeded to give one. Subsequently, Bartocci [4] and Santosuosso
[18] established by algebraic means that an ultraproduct of fields (integral domains,
or local rings) is still a field (respectively, integral domain or local ring).

Our task in this paper is to continue in the same spirit as [1], [4], [18], showing
algebraically that further properties of commutative rings with unit are preserved
under the formation of ultraproducts. More precisely, the rings we shall deal with
are pm-rings (that is, rings in which every prime ideal is contained in a unique
maximal ideal) which have been extensively studied in a previous work [11] and the
mp-rings (that is, rings in which every prime ideal contains a unique minimal prime
ideal).

We investigate ultraproducts of special types of pm-rings and mp-rings. For this
purpose key results are Theorem 1.4 which states that the Boolean algebra of an
ultraproduct of rings is equal to the ultraproduct of the Boolean algebras of the ring
factors; Theorem 1.1 which asserts that an ultraproduct of Boolean algebras is not
a complete Boolean algebra if and only if the cardinalities of the Boolean algebras
are unbounded modulo the ultrafilter for any w-incomplete ultrafilter over the
index set. A further result is contained in Remark 1.3, which extends Theorem 1.1
to w-complete ultrafilters.

Furthermore, we establish the significant result that a direct product of reduced
mp-rings is also an mp-ring; this fails to hold for non-reduced mp-rings.

We wish to thank Professor Karel Kripry for several helpful discussions during
the preparation of this paper.

1. Notation and preliminaries

We collect in this section all notation and all the results from model theory, set
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theory and Boolean algebra theory that we shall need later (see [5], [8], [14] for more
details). To begin with, we shall always deal with commutative rings with unit and
with homomorphisms that send 1 io 1. N will stand for the natural numbers, and
| X| will denote the cardinal number of the set X. Otherwise the nctation is
standard.

1.1 . Ultrafilters

Let 7 be a nonempty set. We recall that #(I) is the set of all subsets of I. A filter
over I is defined to be a nonempty set # of #(J) such that

(1) 9¢ %.

(2) If X,Ye # then XNYe %

(3) If Xe # and XCZCI, then Ze #.
An ultrafilter % over I is a filter which is maximal in the family of filters over 7
(ordered by set inclusion). An ultrafilter # is said to be ron-principal if {i} ¢ # for
all i e and otherwise is principal. If 7 is finite, then all ultrafilters are principal,
but if 7 is infinite, then there exist non-principal ultrafilters. A non-principal
ultrafilter % over [ is said to be w-complete (or countably complete) if whenever
{X,,ln<w} is a coilection of elements of #, then ﬂ{X,,In<w} is also in #. Of
course % is w-incomplete (or countably incomplete) if it is not w-complete. This
definition can be generalized to an arbitrary infinite cardinal a. The ultrafilter #
is said to be a-complete if (\{X;|£<a} e # whenever é<a and X:€ v. If I has
cardinality @, there is no non-principal a-complete ultrafilter over I; therefore all
non-principal ultrafilters on a countable set are w-incomplete.

1.2. Measurable cardinals

A cardinal « is Ulam-measurable if there exists on @ an w®*-complete non-
principal ultrafilter. A cardinal « is measurable if there exists on a 2 f-complete
non-principal ultrafilter for each #<a. It has been proved that the smallest Ulam-
measurable cardinal >w is measurable (see [9]). For our purposes we shall comment
that there exist w-complete non-principal ultrafilter over I only if |I|=x, where x
denotes the hypothetical first measurable cardinal.

1.3. Ultraproduct of rings
Let

R=ER,={f:1»gR,|f<i>eR;}

be the direct product of the family of rings {R;|ie}. Let % be an ultrafilter over
I. We say that two elements f and g of R are % equivalent, in symbols f=, g, if
{iel | J()=g(i)} € %. The binary relation =, is a congruence relation on R. Set
R=Tl,.,R;/% and let f denote the residue class of S modulo #%. The ring R is
termed the ultraproduct of the family {R;|ieI} with respect to the ultrafilter #.
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When the rings R; are all equal, say to S, then R =S/ is termed the ultrapower
of the ring S. Moreover, since R =R, for some i e I whenever the ultrafilter 7 is
principal, we shall assume throughout this paper that the ultrafilters we are dealing
with are non-principal; thus the index set will be infinite.

1.4. Boolean algebra associated with a ring

Let R be a ring. The set of idempotents in R will be denoted by B(R) or simply
by B. The set B forms a Boolean algebra provided with the following order relation:
for any e, fe B, e<f if e=ef. In this case the complement e’ of e in Bis 1 —e,
eNf=ef, eVf=e+f—ef, for any e, f elements of B. Also B is said to be complete
if there exist inf and sup for any subset S of B (see [14]).

1.5. Ultraproducts of Boolean algebras

We introduce some further notation. Let 7 be a set and # be an ultrafilter on /.
We shall write B; for a Boolean algebra and # for [],_, B;/ #, the ultraproduct.
For each i€/, let a; be a cardinal number. We say that {e;|ie} is unbounded
modulo # if for each natural number n we have {ie/ | a;>n} € %; sometimes we
will abbreviate the last statement to o;>n (a.e. mod #), where a.e. mod # means
almost everywhere modulo #. Of course, if the g; are all infinite, then they are un-
bounded modulo #.

Theorem 1.1. Let I be any set and # a countable incomplete ultrafilter on I. Let
B; be a Boolean algebra for every i€l. Then the following conditions are equi-
valent:

( {|.4;|iel} is unbounded modulo .

(ii) £ =]l,.,Bi/# is not a complete Boolean algebra.

For the proof we shall need a preliminary result. First, since # is countably
incomplete, we can pick pairwise disjoint sets /,,, where 1<reN, such that

> Iu=Iand |J._ I,& % for all neN. For each i€ set #(i)=the unique m
such that iel,. Also let u; be the number of atoms of B; if B; is finite and let
u; = oo if B; is infinite. Finally, set v;=min(# (i), &;) (hence v; is always finite and
=1).

Lemma 1.2. For each je N, we have v;>j (a.e. mod #).

Proof. We have
{iel|visjycliel| #3)<j or u;<j}
c U I,U{iel|B; has at most j atoms}

Ks/J

clJ rutiel||B;|<2%}

Ks/J
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The set |, ], is not in @ by the choice of the sets J,; the set {ie/ ||B;|<2%} is
also not in 4’/ by the assumption that {|#,||ie I} is unbounded modulo #. Hence
{:el[v,s;}ds 4, that is v,>j (a.e. mod #).

Proof of Theorem 1.1. Assume that (i) holds. By the definition of v;, we can pick
for each i€ elements b, ;€ B;, where j<v;, such that

b,;#0 and b;;Nb;;,=0 if j#j,.

For each je N, define
if V; >j,
if v; _<..j.

b;;
£(i)= {1 i

Then fie[l,,B; and b;:=f;€ #. We claim that sup;c, b; does not exist in A.
Suppose the contrary and let b=sup,c\ b;. Hence b= J for some fe[],,B;. Let
l;€ N be maximal such that f(i)=b;,, and /;=~-1if f(i)2b, ;, for all j. Set

o b,"[i if [i_>.0,
“”’{o if 1= —1.

Then clearly f(i)=g(i) for all iel. Hence c:=g<f=5b. We prove next that ¢#0.
We have f=b=b;=f;, for all jeN. Therefore f(i)=/;(i) (a.e. mod #) and for all
J€N. But f,(i)=b, ; (a.e. mod %), as follows immediately from Lemma 1.2. Thus
fi)=b;; (a.e. mod %) for any fixed jeN. Hence

(%) l;=j (a.e. mod %) for all jeN.

In particular /;=0 (a.e. mod #); therefore

(*%) g@)=0b;; (#0) (a.e. mod #).

Hence c=g+0 as claimed. Clearly, by (+), /;=j+1 (a.e. mod #). Hence

(#%x) g(")nb,;j-‘-‘b,'l[inb,;j=0 (a.e. mod %)

since /;#/ yields b;;,Nb; ;=0 by the choice of the b; j where j<v;. But (#**) says
that

gNJf;=0, ihat is, cNb;=0
since f;(/)=b;; (a.e. mod 7).
To summarize we have:

O#c<b=supb; and cNb;=0 forall jeN,

JeN

which is an obvious contradiction. This completes the proof that (i) = (ii).

For the converse we shall prove that if {|B;||i€/} is bounded modulo %, then
B is complete (the assumption that # is countably incomplete is not needed for the
proof of this part). Thus we are supposing that for some neN, |B;|<n (a.e.
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mod 7). Set I;= {icI||B;|=j} for j<n. ThenI= Ujs,,lje 4 and therefore there
is some fixed j such that ;€ #, that is, |B;| =/ (a.e. mod #). Thus j=2' for some
! (the only possible cardinals of finite Boolean algebras being power of 2). Hence
B; is (isomorphic to) the algebra on / atoms (a.e. mod #). Therefore we can sup-
pose that B, is the algebra on / atoms for all i € I (changing the algebraic structure
of B; for ie J& # does not affect the ultraproduct). Thus let B;= .« be the algebra
on / atoms for ail ie /. But then # =[], &/ % ="'/ is isomorphic to « itself;
hence .7 is complete. To see that # = .o we proceed as follows. Let be #; then b=F
for some fe ' For each ae ., set I,={iel|f(i)=a}. Then I=|J,__I,. Since
is finite, I,€ # for some a € . Hence f(i)=a (a.e. mod #). Define ¢(f)=a. Then
it is not hard to check that ¢ is an isomorphism of # onto .

Remark 1.3. Theorem 1.1 clarifies the situation for countably incomplete ultra-
filters, that is for an index set 7 whose cardinality is less than the first measurable
cardinal & (if it exists). When |I| =k, we have to take care of w-complete ultrafilters
as well. In this case the ultraproducts will be complete for all complete Booleai:
algebras whose cardinality remains bounded by a certain very large cardinal number
(namely the degree of completeness of the ultrafilter). However, one has the com-
pleteness for trivial reasons - the ultraproduct is simply isofnorphic to one of the
factors. If the cardinalities of the algebras are allowed to approach this cardinal (or
exceed it) (mod #), the ultraproduct is again incomplete.

Another result of independent interest is the following.

Theorem 1.4. Ler I be a set and, for each i€ l, let R; be a ring. Set B;=B(R,) for
all iel, and let ¥ be an ultrafilter on I. Then

B(H R,/ «/) =[] Bi/ ».

iel iel

Proof. We need only show that the set-theoretical equality holds since the Boolean
operations are the same. The includion [],_,B;/# C #4([],., R,/ %) is clear. To
establish the converse, we choose any fe #([],_, R,/ %) and set

Hy={iel|f*()=fl)} € .
.1 Bi/ % where ge ], Bi. Let g=(3(/)) be the
R; defined as follows
- (fU) ifieHy,
g(')"{l if i¢ Hj,

for all iel. Then ge]],_,B;cIl,,R; and §=7.

We need to show that Ff=ge[]
element of []

iel
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2. Ultraproducts of rings with the pm-property

We recall from [11] that a ring 4 is a pm-ring if and only if it satisfies the
following condition: For every element me A, there exist a,beA such that
(1 -am)(1-bm’)=0, where m’=1-m.

Proposition 2.1. An ultraproduct of pm-rings is a pm-ring.

Proof. From [11] we know that a direct product of pm-rings is a pm-ring. Further-
more, passing to a quotient does not affect the order structure of prime ideals in
the case of pm-rings.

Special types of pm-rings
2.1. Soft rings

Definition 2.2. A soft (or mou-) ring is a ring whose Jacobson radical is zero and
whose maximal spectrum is 7, (see [7], [i1], [17]).

Proposition 2.3. An ultraproduct of soft rings is a soft ring.

Proof. An ultraproduct of soft rings is already a pm-ring since a soft ring is a pm-
ring (see [11]), and therefore Proposition 2.1 applies. Moreover, the Jacobson
radical of an uitraproduct is the ultraproduct with respect to the same ultrafiiter of
the jacouson radicals (see [18]), and the proof is complete.

2.2. TB-rings

Let A be a ring and let B be the Boolean algebra associated with 4. The map

¢ : Max A—Spec B given by m~mN B is always continuous, surjective and closed
(see [2]).

Definition 2.4. A ring A is said to be topologically Boolean (or, briefly, a TB-ring)
if either the above map ¢ is injective (that is, a homeomorphism) or the following
property is satisfied:

TB-property. For all m,m’e A such that m+m’=1, there exist a,b,c,d,ec A,
e*=e, such that (1—am)(1-bm’)=0, 1—am=ce and 1-bm’'=de’, where
e'=1-e. (See [11].)

A TB-ring is a pm-ring and, moreover, a direct product of TB-rings is a TB-ring
(see [11]).
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Theorem 2.5. The TB-property is inherited by ultraproducts.

Proof. Given {A;|ie I}, where each 4, is a TB-ring, set A=[],_, 4, and B=B(A).

It is not difficult to show that B=]],_,B;. Let % be an ultrafilter on 7. Set

A=1l,.,,Ai/% and B=B(A). By Theorem 1.4, B=T|,_, B;/ %; therefore we need

only show that the map a/u in the following commutative diagram is injective.
~a

Max 4 Spec B
1 1

i | embedding Jlclosed embedding

a/u

Max A

Spec B

From the commutativity of the diagram we deduce that (@~ ©j) o @/u =i, which is
injective; then a/u must be injective.

2.3. Complete TB-rings

Definition 2.6. A TB-ring whose Boolean algebra of idempotents is complete is said
to be a complete TB-ring.

That a direct product of complete TB-rings is also a compl .te TB-ring has already
been proved in [11].

Theorem 2.7. There exist incomplete ultraproducts of complete TB-rings.

Proof. For each integer n we take the Boolean algebra 2" and we let # be any non-
principal ultrafilter on N. Then [[ _, 2"/# is incomplete by Theorem 1.1.

neN

3. Reverse topology (see [15])

Let A be a ring and let X denote the set of all prime ideals of A. Let Spec A be
X endowed with the Zariski topology which partially orders X by set-inclusions,
thatis, =<2 if # ¢ 2 for # 2 € X. We give X a new topology by taking as a basis
for the closed subsets the quasi-compact open subsets of Spec A. Then X with the
new topology is spectral (that is, it is the prime spectrum of a ring which can be
chosen to be reduced). Moreover, the order < induced on X by the latter topology
is precisely the reverse of the original one (that is, # < 2 iff 2 < ).

Let us give to the prime spectrum of the rings introduced in Section 2 the reverse
topology and let us investigate the behavior of the rings so obtained by taking direct
products and ultraproducts of them. This will be done in the next section.
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4. MP-property under direct product and ultraproducts

Remark 4.1. The ‘duality’ between the PM-property and the MP-property, which
can be established by means of the reverse topology, does not extend to the
topology. In fact, if a ring is pm, then its maximal spectrum is compact (that is,
Hausdorff since it is always quasi-compact (see [11], [12])), but the MP-property
does not imply that the minimal spectrum of the ring is compact (that is, quasi-
compact since it is always Hausdorff). Take as a counter-example C(X, R), the ring
of all continuous real valued functions on a topological space X, which is an F-space
but not a basically disconnected space (see [3], [13]).

For the first result of this section we need a fact from [3].

Lemma 4.2. Let A be a reduced ring. Then the following conditions are equivalent:
(i) A is an mp-ring.
(ii) If a,be A and ab=0, then Ann(a)+ Ann(b)=A.
(iii) For every a,be A, Ann(a) + Ann(b) = Ann(ab).

Theorem 4.3. A direct product (respectively, an ultraproduct) of reduced mp-rings
is a reduced mp-ring.

Proof. We can apply condition (ii) of Lemma 4.2 since it is not difficult to prove
that a direct product (respectively, an ultraproduct) of reduced rings is a reduced
ring as well.

Remark 4.4. If we drop the hypothesis that the rings are reduced, then Theorem 4.3
does not hold, as the following example shows.

Example 4.5. Let A=][]7_, A,, where A,=«k[X,, Y,1/(X,Y,, X;, Y,') and let k be
any field. Set 7,=(X,Y,, X}, Y;'). Each 4, is an Artinian local ring and hence an
mp-ring with maximal ideal .#,=(x,,y,) where x,=X,+7, and y,=Y,+ .7,
denote the residue classes of X, and Y, modulo 7,. The element x=(x,), X, € 4,,
belongs to the Jacobson radical J=1]],., .#, of A and so does the element y=(y,),
Yn€ A4,. Moreover, x and y are not nilpotent because x*=(x;)#0 and
Y=(ys)#0 for every integer k=1, but xy=(x,y,)=0. Now take any maximal
ideal .# of A. There exic*s a minimal prime ideal # C .# such that x¢ #; thus y € 2.
Also there exists a minima: prime ideal 2 C .# such that y ¢ 2; therefore xe 2 and
# # 2. Hence A is not an mp-ring.

Special types of mp-rings

4.1. Weak Baer rings



Uliraproducts of pm-rings and mp-rings 19

Definition 4.6. A ring is said to be a weak Baer ring if the annihilator ideal of every
element is principal and is generated by an idempotent (see [3], [6], [10], [19]).

A weak Baer ring is reduced and it is an mp-ring because of the following fact
from [3], [6] and [10].

Theorem 4.7. Let A be a reduced ring. Then the following conditions are equivalent:
(i) A is a weak Baer ring.
(ii) A is an mp-ring and Min A is compact.
(iii) A is a p.p.-ring (that is, every principal ideal is projective).
(iv) The ring of fractions Q(A) of A is von Neumann regular (that is, reduced and
0-dimensional) and B(Q(A)) lies in A.

As our first result we prove:

Theorem 4.8. A direct product (respectively, an ultraproduct) of weak Baer rings
is a weak Baer ring.

Proof. Let A=T[,_, A;, where each A; is a weak Baer ring. Write O, for the ring
of fractions of 4;. We will prove that A satisfies (iv) of Theorem 4.7. First, the
isomorphism Q(A4)> 1], , O, implies that Q(4) is a von Neumann regular ring.
Secondly, since

e BN >5( [ &)= 11 5@ = T 4 =B( I A.) =B,

\AEA

the idempotents of Q lie in A4, and therefore the first part of the statement is proved.
(For a different proof see [19, Lemma 2]). For the second part, let # be an ultra-
filter over the index set A. Of course # will be non-principal. From the isomorphism
QU e, A/ U)>3T],c 4 Qi/ % established in [18] it follows that O(II;., 4./ #) is
von Neumann regular. Moreover

B( I1 A4,/ d?/) QB(Q( T4 A/»f/>>:+3< 1 0./ z/) =}§1 B(Q,)/ ¥

Aed AeA Aed

=11 By Af/=3( I AA/{/),
iet y

A€ A
which concludes the proof.

4.2. Baer rings

Definition 4.9. A4 is said to be a Baer ring if the annihilator ideal of every ideal is
princival and is generated by an idempotent (see [16]).
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Of course, a Baer ring is a weak Baer ring and hence an mp-ring; however the
following result makes the situation more precise.

Proposition 4.10. A is a Baer ring if and only if it is a weak Baer ring whose Boolean
algebra of idempotent elements is complete.

Theorem 4.11. Let {AAH.EA} be a family of Baer rings. Set A=]], ., A, and
A=1l,.,A:/ %, where % is an ultrafilter on A. Then A is always a Baer ring, but
A need not be.

Proof. By virtue of Theorem 4.8 and Proposition 4.10 we only need to show that
B(A) (respectively, B(A)) is complete. That B(A)=]I,,, B(A;) is complete is
straightforward. By Theorem 1.4, B(A)=]l, . B(4;)/#% and now we can use
Theorem 1.1 and Remark 1.3 to get the required conclusion.
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